Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	000	000

Macroeconomics 1 (3/7)

The DICE model (Nordhaus)

Olivier Loisel

ENSAE

September - December 2024

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
●0000	000000000	0000000	000000000000000000000000000000000000000	000	000

Growth and climate change

- The CKR model does not take into account the consequences of economic activity for the climate nor, vice-versa, the consequences of **climate change** for the economy.
- Nordhaus (1992, 1994) has extended the CKR model to take these consequences into account, giving rise to the **DICE model** (≡ Dynamic Integrated Climate-Economy model), which is a model of the world economy and the world climate.
- William D. Nordhaus: American economist, born in 1941 in Albuquerque, professor at Yale University since 1967, co-laureate (with Paul M. Romer) of the Sveriges Riksbank's prize in economic sciences in memory of Alfred Nobel in 2018 "for integrating climate change into long-run macroeconomic analysis".

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
0000	000000000	0000000	000000000000000000000000000000000000000	000	000

Pollution externality

- A key difference with the CKR model is the presence, in the DICE model, of a **pollution externality**.
- The production activity of each firm, by emitting greenhouse gases, contributes to climate change which harms all agents.
- Because of this externality,
 - the first welfare theorem does not apply,
 - the competitive equilibrium under laisser-faire is not socially optimal,
 - the \mathcal{BOOP} would choose less production and less greenhouse-gas emissions,
 - the optimal "carbon tax" is positive.

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
0000	000000000	0000000	000000000000000000000000000000000000000	000	000

Overview of the chapter

- This chapter presents
 - the equilibrium conditions of the DICE model,
 - its normative implications (optimal carbon tax).
- The optimal value of the carbon tax in the DICE model is very sensitive to the value chosen for the **discount rate**.
- For this reason, the chapter also discusses how to calibrate the discount rate
 - depending on the (descriptive or prescriptive) approach considered,
 - taking or not taking into account uncertainty.

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	000	000

Which DICE model?

- Nordhaus has, over time, developed several successive versions of the DICE model:
 - the first one, DICE 1992 (Nordhaus, 1992, 1994), is the simplest,
 - the last two, DICE 2016 and DICE 2023, are the most complicated.
- In the following, we present
 - the equilib. conditions of DICE 1992 (reformulated in continuous time),
 - the calibration and results of DICE 1992, DICE 2016 and DICE 2023.

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	000	000

Chapter outline

- Introduction
- 2 Equilibrium conditions
- Onter the second sec
- Oiscount rate
- 6 Conclusion

O Appendix

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	00000000	0000000	000000000000000000000000000000000000000	000	000

Equilibrium conditions

Introduction

2 Equilibrium conditions

- Economic part
- Climatic part
- Ormative implications
- Discount rate

Onclusion

O Appendix

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	00000000	0000000	000000000000000000000000000000000000000	000	000

Economic part I

- The DICE model has two parts, which interact with each other:
 - an economic part,
 - a climatic part.
- The economic part of the DICE-1992 model corresponds to the CKR model with two simplifications and one change.

• Simplifications:

- logarithmic consumption utility: u(ct) = ln(ct) (i.e. coefficient of relative risk aversion constant, equal to θ = 1),
- Cobb-Douglas production function for each firm *i*: $Y_{i,t} = \Omega_t K_{i,t}^{\alpha} (A_t N_{i,t})^{1-\alpha}$, with $0 < \alpha < 1$.

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	00000000	000000000000000000000000000000000000000	000	000

Economic part II

• Change: in the production function, instead of $\Omega_t \equiv 1$, we have

$$\Omega_t \equiv rac{1-b_1\mu_t^{b_2}}{1+ heta_1 \mathcal{T}_t^{ heta_2}}$$

with $b_1>$ 0, $b_2>$ 0, $heta_1>$ 0, $heta_2>$ 0, where

- T_t is the temperature of the surface and shallow oceans,
- μ_t the greenhouse-gas-emission reduction rate.

Interpretation:

- $\partial \Omega_t / \partial T_t < 0$ captures the economic cost of climate change,
- $\partial\Omega_t/\partial\mu_t < 0$ captures the economic cost of greenhouse-gas-emission reduction.
- In this model, the emission reduction rate µt is considered as the economic-policy instrument; it can be interpreted as the outcome of an emission tax ("carbon tax").

Olivier Loisel, ENSAE

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	00000000000000	000	000

Economic part III

- Each firm *i* being atomistic, its individual decisions have, everything else equal, a negligible effect on the temperature T_t and on the economic-policy instrument μ_t .
- Each firm *i* thus chooses $K_{i,t}$ and $N_{i,t}$ to maximize its instantaneous profit taking T_t and μ_t , and therefore Ω_t , as given.
- The first-order conditions of firms' optimization problem are thus the same as in Chapter 2, now with the new Ω_t factor.
- The other equilibrium conditions of Chapter 2, characterizing households' behavior and markets' clearing, are unchanged.

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	000	000

General overview of the economic part I *

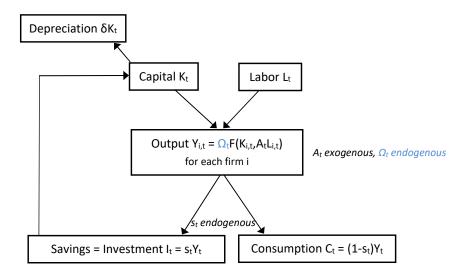
- Firms rent capital and employ labor to produce goods, with a total factor productivity that depends negatively on
 - the temperature of the surface and shallow oceans,
 - greenhouse-gas-emission reduction rate.
- Households own capital and supply labor.
- The goods produced by firms are used for households' consumption and investment in new capital.
- The saving rate is endogenous, optimally chosen by households.
- Capital evolves over time due to investment and capital depreciation.

(In the pages whose title is followed by an asterisk,

in blue: changes from Chapter 2.)

Introdu	tion Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	0000000000	0000000	000000000000000000000000000000000000000	000	000

General overview of the economic part II *



Intro	luction Equilibr	ium conditions Norr	native implications	Discount rate	Conclusion .	Appendix
0000	00000	0000 000	00000	000000000000000000000000000000000000000	000	000

General overview of the climatic part I

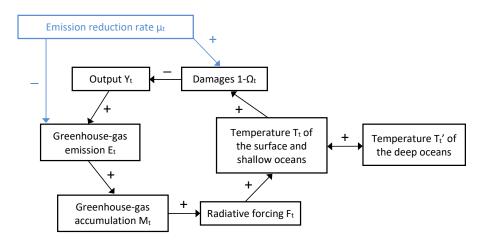
- Production (flow Y_t) emits greenhouse gases (flow E_t), all the more so as the emission reduction rate μ_t is low.
- These gases accumulate in the atmosphere (stock M_t).
- This accumulation increases radiative forcing F_t .
- This increase in radiative forcing raises
 - the temperature T_t of the surface and shallow oceans,
 - the temperature T'_t of the deep oceans,

which are linked to each other.

• The rise in T_t leads, everything else equal, to a decrease in output Y_t .

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	00000000000	0000000	000000000000000000000000000000000000000	000	000

General overview of the climatic part II



(In blue: economic-policy instrument.)

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	0000000000	0000000	000000000000000000000000000000000000000	000	000

Equations of the climatic part I

• Emissions of greenhouse gases:

$$E_t = (1 - \mu_t)\varphi_t Y_t,$$

where φ_t is exogenous.

• Accumulation of greenhouse gases in the atmosphere:

$$M_t = \gamma E_t - \delta_m (M_t - M)$$

with $\gamma > 0$ and $\delta_m > 0$, where *M* represents the pre-industrial value of M_t .

• Radiative forcing:

$$F_t = \eta \log_2 \frac{M_t}{M} + O_t$$

with $\eta > 0$, where O_t is exogenous.

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	00000000●	0000000	000000000000000000000000000000000000000	000	000

Equations of the climatic part II

• Dynamics of the temperature T_t of the surface and shallow oceans:

$$\dot{T}_t = \frac{1}{R_1} \left[F_t - \lambda T_t - \frac{R_2}{\tau} \left(T_t - T_t' \right) \right]$$

with $R_1>$ 0, $R_2>$ 0, $\lambda>$ 0, and $\tau>$ 0.

• Dynamics of the **temperature** T'_t of the deep oceans:

$$\overset{\cdot}{T'_t} = \frac{1}{\tau} \left(T_t - T'_t \right).$$

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	00000000000000	000	000

Normative implications

- Introduction
- 2 Equilibrium conditions
- One of the second se
 - Calibration and results
 - Sensitivity of the results to the calibration
- Discount rate
- Onclusion

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	000	000

Pollution externality

• For some given $(K_{j,t}, N_{j,t})_{j \neq i}$, a variation in $(K_{i,t}, N_{i,t})$ has both

- a direct effect on $Y_{i,t} = \Omega_t K_{i,t}^{\alpha} (A_t N_{i,t})^{1-\alpha}$,
- an indirect effect on all the $Y_{j,t'}$ for $j \in \{1, ..., I\}$ and $t' \ge t$, via Y_t , E_t , $(M_{t'})_{t' \ge t}$, $(F_{t'})_{t' \ge t}$, $(T_{t'})_{t' \ge t}$ and $(\Omega_{t'})_{t' \ge t}$.
- Firm *i* takes only the first effect into account when choosing $(K_{i,t}, N_{i,t})$ because
 - it does not take into account the indirect effect on the $Y_{j,t'}$ for $j \neq i$,
 - the indirect effect of (K_{i,t}, N_{i,t}) on Y_{i,t'} is negligible compared with the direct effect of (K_{i,t'}, N_{i,t'}) on Y_{i,t'} (the number of firms I being large).
- As a consequence, each firm *i* chooses K_{i,t} and N_{i,t} to maximize its instantaneous profit taking Ω_t as given.
- We say that there is a **pollution externality** between firms.

Olivier Loisel, ENSAE

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	000	000

Implications for the optimal carbon tax

- Because of this externality,
 - the first welfare theorem does not apply,
 - the comp. equilibrium with $\mu_t = 0$ for $t \ge 0$ is not socially optimal,
 - the optimal (i.e. U_0 -maximizing) path $(\mu_t)_{t\geq 0}$ is non-zero.
- The numerical results for the optimal carbon tax depend on
 - the model version,
 - the calibration of this version.
- They particularly depend on the calibration of
 - the damages caused by climate change (parameters θ_1 and θ_2),
 - the discount rate ("parameter" r).

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	000	000

Calibration of DICE 1992, 2016 and 2023

	DICE 1992	DICE 2016	DICE 2023
Damages caused by a 3°C warming (<i>in % of production</i>)	1.3%	2.1%	3.1%
Discount rate (<i>in % per year</i>) average from 2020 to 2050 average from 2020 to 2100	not avail. not avail.	4.7% 4.2%	4.4% 3.9%

Sources: Barrage and Nordhaus (2023), Nordhaus (1994, 2018, 2019).

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	00000000	000000000000000000000000000000000000000	000	000

Results of DICE 1992, 2016 and 2023

	DICE 1992	DICE 2016	DICE 2023
Optimal carbon tax (<i>in 2018 \$ per ton of CO</i> ₂)			
in 2020 in 2050 in 2100	18\$ 32\$ 40\$	43 \$ 105 \$ 295 \$	53 \$ 127 \$ not avail.
Warming from the pre-industrial period to 2100 <i>(in ℃)</i> with the current tax with the optimal tax	3.3°C 3.2°C	4.1°C 3.5°C	3.8℃ 2.7℃

Sources: Barrage and Nordhaus (2023), Nordhaus (1994, 2018, 2019).

Sensitivity of the results to the calibration I

- Nordhaus has, over time, revised upwards his calibration of damages caused by climate change (as shown on page 20).
- Nonetheless, this calibration has been criticized for being too low.
- In the next two pages, we consider a higher calibration, inspired by Howard and Sterner (2017).
- This calibration sets the damages at 9% of production for a 3°C warming (instead of 3.1% in DICE 2023).
- In these two pages, we also consider alternative calibrations for the discount rate, ranging from 5% to 1% per year.

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	00000000	000000000000000000000000000000000000000	000	000

Sensitivity of the results to the calibration II

Optimal carbon tax (*in 2019* \$ *per ton of* CO₂) depending on the calibration of DICE 2023

Calibration	2020	2025	2050
serving as benchmark	53	62	127
with higher damages	132	156	293
with alternative discount rates			
r=5% per year	33	39	77
r=4% per year	51	60	110
r=3% per year	87	103	170
r=2% per year	170	200	289
r=1% per year	429	505	609

Source: Barrage and Nordhaus (2023).

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	000	000

Sensitivity of the results to the calibration III

Warming from the pre-industrial period (in $^{\circ}C$) under optimal tax, depending on the calibration of DICE 2023

Calibration	2020	2050	2100	2150
serving as a benchmark	1.2	1.9	2.7	2.8
with higher damages	1.2	1.8	1.9	1.7
with alternative discount rates				
r=5% per year	1.2	2.0	3.0	3.6
r = 4% per year	1.2	2.0	2.9	3.3
r=3% per year	1.2	1.9	2.6	2.7
r=2% per year	1.2	1.9	2.2	2.0
r=1% per year	1.2	1.9	1.8	1.6

Source: Barrage and Nordhaus (2023).

Olivier Loisel, ENSAE

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	•0000000000000	000	000

Discount rate

- Introduction
- 2 Equilibrium conditions
- Ormative implications
- Discount rate
 - Calibration of the discount rate
 - Taking uncertainty into account
- Onclusion

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	000	000

Role of the discount rate

- The numerical normative implications of the DICE model are very sensitive to the calibration of the **discount rate** (or real interest rate r_t).
- For a given value D_t of damages occurring at time t > 0 (caused by climate change), the lower (r_τ)_{0≤τ≤t},
 - the higher the actualized value $D_t e^{-\int_0^t r_\tau d\tau}$ of these future damages,
 - the higher the optimal tax path $(\mu_t)_{0 \leq \tau \leq t}$,
 - the lower the "optimal" temperature path $(T_t)_{0 \le \tau \le t}$.

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	000	000

Steady-state discount rate I

• With a CRRA instantaneous-utility function, the Euler equation is

$$\frac{c_t}{c_t} = \frac{r_t - \rho}{\theta}.$$

- We admit that the DICE model has a steady state in which per-capita consumption c_t grows at the rate of technological progress g, like the CKR model (Chapter 2).
- At this steady state, the discount rate (i.e. the value of r_t) is therefore

$$r = \underbrace{\rho}_{\substack{\text{impatience}\\ \text{effect}}} + \underbrace{\theta g}_{\substack{\text{wealth}\\ \text{effect}}}.$$

Steady-state discount rate II

- The discount rate r depends positively on
 - the rate of time preference ρ : the more impatient the agents, ...
 - the growth rate of the economy g: the more agents will consume in the future relatively to the present, the lower the marginal utility of consumption in the future relatively to the present, ...
 - the inverse of the elasticity of intertemporal substitution θ : the higher θ , the more the marginal utility of consumption $(c_t^{-\theta})$ is decreasing in consumption (c_t) , the lower the marginal utility of consumption in the future relatively to the present (for g > 0), ...

...the more preferable present consumption relatively to future consumption.

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	000	000

Examples of calibration of r

	ρ (% per year)	g ear) (% per year)		discount rate (% per year)
Weitzman (2007)	2%	2%	2	6%
Nordhaus (2007)	1.5%	2%	2	5.5%
Nordhaus (2008)	1%	2%	2	5%
Gollier (2013)	0%	2%	2	4%
Stern (2007)	0.1%	1.3%	1	1.4%

 \hookrightarrow Stern (2007) recommends a substantially higher carbon tax than Nordhaus (2007) because he considers a substantially lower discount rate.

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	000	000

Calibration of ρ I

- **Descriptive approach**: Nordhaus (2007) calibrates *ρ* using macroeconomic and financial data (real interest rate).
- **Prescriptive approach**: Stern (2007) considers that ρ represents
 - the weight of present generations' utility relatively to future generations' utility (in the social utility function),
 - and not the weight of present utility relatively to future utility for a given generation (in the individual utility function)

(we will come back to this distinction in the overlapping-generations model in Chapter 7).

 The prescriptive approach suggests the calibration ρ = 0: there is no reason to put a lower weight on future generations' utility than on present generations' utility (in the social utility function).

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	000	000

Calibration of ρ II

• The calibration of ρ , however, must satisfy the constraint

$$ho-n>(1- heta)$$
 g,

for households' intertemporal utility to take a finite value at the steady state (as seen in Chapter 2).

- For $\theta = 1$ (value chosen by Stern, 2007) and n = 0 (value chosen by Stern, 2007, for the post-2200 period), this constraint amounts to $\rho > 0$.
- Stern (2007) chooses the value $\rho = 0.1\%$ per year, which he justifies with a(n exogenous) risk of human extinction of 0.1% per year.

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	00000000	00000000000000	000	000

Taking uncertainty into account I

- The expression $r = \rho + \theta g$ was obtained by ignoring uncertainty; now, the future is obviously uncertain, all the more so with climate change.
- In the presence of uncertainty, we consider the following intertemporal utility ("expected-utility theory" of Morgenstern and Von Neumann, 1953):

$$U_0 \equiv \mathbb{E}_0 \left\{ \int_0^{+\infty} e^{-
ho t} u(c_t) dt
ight\}$$
 ,

where $\mathbb{E}_0\{.\}$ represents the expectation operator conditional on the information set at time 0.

- For the sake of simplicity, we have set n = 0 (which does not affect the results).
- Let us assume that the real interest rate is constant, and let *r* denote its value.

Olivier Loisel, $\mathrm{E}\mathrm{NSAE}$

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	00000000	000000000000000	000	000

Taking uncertainty into account II

- The household has the possibility of deviating from their optimal choice (c_0, c_1) by
 - lending an additional infinitesimal quantity of goods ds at time 0,
 - consuming the additional infinitesimal quantity of goods $e^r ds$ at time 1.
- The change in intertemporal utility ΔU_0 that this deviation would entail is $\Delta U_0 = -u'(c_0)ds + e^{-\rho}\mathbb{E}_0\{u'(c_1)\}e^rds = \left[-u'(c_0) + e^{r-\rho}\mathbb{E}_0\{u'(c_1)\}\right]ds.$
- Since (c_0, c_1) is the household's optimal choice, we have $\Delta U_0 = 0$:
 - if $\Delta U_0 > 0$, then the hous. would prefer to deviate as described above,
 - if $\Delta U_0 < 0$, then the household would prefer to deviate in the opposite direction (borrow more at time 0 and consume less at time 1).
- We thus obtain the following **Euler equation** from time 0 to time 1:

$$u'(c_0) = e^{r-\rho} \mathbb{E}_0\{u'(c_1)\}.$$

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	0000000000000000	000	000

Taking uncertainty into account III

• In the following particular case:

- no uncertainty: $\mathbb{E}_0\{u'(c_1)\} = u'(c_1)$,
- CRRA instantaneous-utility function: $u'(c_t) = c_t^{-\theta}$,
- constant growth rate of per-capita consumption: $c_1 = e^g c_0$,

this Euler equation can be rewritten as $c_0^{-\theta}=e^{r-\rho}c_0^{-\theta}e^{-\theta g}$, that is to say

$$r = \rho + \theta g.$$

- If u' is strictly convex, then, everything else equal, the larger the uncertainty about c_1 (i.e. the variance of c_1),
 - the larger $\mathbb{E}_0\{u'(c_1)\}$ (as a consequence of a generalized version of Jensen's inequality),
 - the smaller r (as a consequence of the Euler equation),
 - the more households want to save (precautionary savings).

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	000	000

Taking uncertainty into account IV

- The function u' being positive and strictly decreasing, it is strictly convex at least locally.
- In the CRRA case $(u'(c_t) = c_t^{-\theta})$, u' is strictly convex globally: $u'''(c_t) = \theta(\theta + 1)c_t^{-\theta-2} > 0$ for any $c_t > 0$.
- A measure of the convexity of u' is the **coefficient of relative prudence** (Kimball, 1990):

$$p(c_t) \equiv \frac{-c_t u'''(c_t)}{u''(c_t)}$$

• In the CRRA case, $p(c_t)$ is independent of c_t and equal to

$$p(c_t) = \theta + 1.$$

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	00000000000000000	000	000

Taking uncertainty into account V

- We henceforth consider the following particular case:
 - CRRA instantaneous-utility function: $u'(c_t) = c_t^{-\theta}$,
 - growth rate of per-capita consumption from time 0 to time 1 following a normal distribution:

$$\mathit{c}_{1}=\mathit{e}^{ ilde{g}}\mathit{c}_{0}$$
 with $ilde{g}\sim\mathcal{N}\left(\mu,\sigma^{2}
ight)$,

where $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}_+ \setminus \{0\}$.

• The Euler equation can then be rewritten as $c_0^{-\theta} = e^{r-\rho}c_0^{-\theta}\mathbb{E}\{e^{-\theta\tilde{g}}\}$, that is to say

$$r =
ho - \ln \mathbb{E} \{ e^{- heta ilde{g}} \} =
ho + heta \left(\mu - rac{ heta}{2} \sigma^2
ight),$$

where the last equality comes from the result $\mathbb{E}\{e^{-\theta \tilde{g}}\} = e^{-\theta \left(\mu - \frac{\theta}{2}\sigma^2\right)}$ proved in the appendix.

Olivier Loisel, ENSAE

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	0000000000000000	000	000

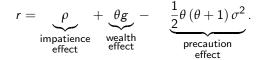
Taking uncertainty into account VI

 Let g denote the growth rate of expected per-capita consumption from time 0 to time 1: E{c₁} = e^g c₀ and hence

$$g = \ln \frac{\mathbb{E}_0\{c_1\}}{c_0} = \ln \frac{\mathbb{E}_0\{e^{\tilde{g}}c_0\}}{c_0} = \ln \mathbb{E}\{e^{\tilde{g}}\} = \mu + \frac{1}{2}\sigma^2,$$

where the last equality comes from the result $\mathbb{E}\{e^{\tilde{g}}\} = e^{\mu + \frac{1}{2}\sigma^2}$ proved in the appendix.

• We can thus rewrite the Euler equation as



Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	0000000000000	000	000

Taking uncertainty into account VII

- The precaution effect is equal to half the product of
 - the coefficient of relative risk aversion (θ) ,
 - the coefficient of relative prudence $(\theta + 1)$,
 - the variance of the growth rate of the economy (σ^2) .
- The same result is obtained, this time as a second-order approximation, when the CRRA-utility and normal-distribution assumptions are relaxed.
- Considering $\sigma = 3.6\%$ (standard error of the year-on-year growth rate of per-capita consumption in the US), Gollier (2013) gets a precaution effect of 0.4% per year and hence a discount rate of 3.6% per year.
- Gollier (2013) shows that the precaution effect can be larger, and hence the discount rate smaller, in the **long term** and/or in the presence of **catastrophic risks**.

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	•00	000

Conclusion

- Introduction
- 2 Equilibrium conditions
- Ormative implications
- Oiscount rate
- 6 Conclusion

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	000	000

Main predictions of the model

- The competitive equilibrium under laisser-faire is not socially optimal because of a **pollution externality**.
- Everything else equal, the optimal carbon tax depends
 - positively on the economic damages caused by climate change,
 - negatively on the **discount rate**.
- Under certainty, the discount rate (r) is the sum of
 - an impatience effect (ρ) ,
 - a wealth effect (θg) .
- Uncertainty (normal distribution for the growth rate) reduces the discount rate (r) in the short term by a precaution effect $(\theta(\theta + 1)\sigma^2/2)$.

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	000	000

One limitation of the model

- As in the CKR model (Chapter 2), the rate of technological progress g is exogenous.
- Now, this rate of technological progress is a key determinant of the discount rate and hence of the optimal carbon tax in the DICE model.
- If the rate of technological progress were endogenous,
 - could some policies affect it?
 - what role should they play?

 \hookrightarrow Chapters 4 and 5 ("endogenous-growth theories") endogenize the rate of technological progress.

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	000	•00

Appendix

- Introduction
- 2 Equilibrium conditions
- Ormative implications
- Oiscount rate
- 6 Conclusion

6 Appendix

Introduction Equilibrium conditions Normative in	nplications Discount rate Conclu	sion Appendix
000000 00000000 0000000	000000000000000000000000000000000000000	000

Computation of $\mathbb{E}\{e^{-\varphi \tilde{g}}\}$ when $\tilde{g} \sim \mathcal{N}(\mu, \sigma^2)$ |

• For any $\mu^* \in \mathbb{R}$ and any $\sigma^* \in \mathbb{R}_+ \setminus \{0\}$, let

$$x \mapsto f(x; \mu^*, \sigma^*) \equiv \frac{1}{\sigma^* \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu^*}{\sigma^*}\right)^2}$$

denote the density of the distribution $\mathcal{N}\left(\mu^{*},\sigma^{*2}\right)$.

• For any $\mu^* \in \mathbb{R}$ and any $\sigma^* \in \mathbb{R}_+ \setminus \{0\}$, since $f(x; \mu^*, \sigma^*)$ is a density, we have

$$\int_{-\infty}^{+\infty} f(x; \mu^*, \sigma^*) dx = 1.$$

Introduction	Equilibrium conditions	Normative implications	Discount rate	Conclusion	Appendix
00000	000000000	0000000	000000000000000000000000000000000000000	000	000

Computation of $\mathbb{E}\{e^{-\varphi \tilde{g}}\}$ when $\tilde{g} \sim \mathcal{N}(\mu, \sigma^2)$ II

• If $ilde{g} \sim \mathcal{N}\left(\mu,\sigma^2
ight)$, then for any $arphi \in \mathbb{R}$,

$$\mathbb{E}\left\{e^{-\varphi\tilde{g}}\right\} = \int_{-\infty}^{+\infty} e^{-\varphi x} f(x;\mu,\sigma) dx$$

$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\varphi x} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} dx$$

$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\varphi\left(\mu - \frac{\varphi}{2}\sigma^{2}\right)} e^{-\frac{1}{2}\left[\frac{x-(\mu-\varphi\sigma^{2})}{\sigma}\right]^{2}} dx$$

$$= e^{-\varphi\left(\mu - \frac{\varphi}{2}\sigma^{2}\right)} \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x;\mu-\varphi\sigma^{2},\sigma) dx$$

$$= e^{-\varphi\left(\mu - \frac{\varphi}{2}\sigma^{2}\right)}.$$

• Replacing φ with θ and -1 respectively, we get the results mentioned on pages 36 and 37.